Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints

$\underline{\text { Danping Shi }}{ }^{1}$ Siwei Sun ${ }^{1}$ Patrick Derbez ${ }^{2}$ Yosuke Todo ${ }^{3}$ Bing Sun ${ }^{4}$ Lei Hu ${ }^{1}$

${ }^{1}$ Institute of Information Engineering, Chinese Academy of Sciences, China
${ }^{2}$ Universit Rennes 1 / IRISA
${ }^{3}$ NTT Secure Platform Laboratories
${ }^{4}$ College of Science, National University of Defense Technology,China

ASK2017 2017.12.11

Outlines

(1) Introduction
(2) Modelling the MITM attack

3 MITM and Impossible differential application in design
4. Conclusion

Outline

(1) Introduction

- Searching methods
- Distinguisher of Demirci-Selçuk MITM
- Key recovery attack of MITM
(2) Modelling the MITM attack

3) MITM and Impossible differential application in design
(4) Conclusion

Automatic Cryptanalysis

- Dedicated search
- MILP,CP,SAT,SMT

Searching methods for MITM

- Demirci-Selçuk MITM, FSE 2008.
- Derbez and Fouque: Dedicated search algorithm
- Li Lin, Wenling Wu: General model based on MILP

MITM Distinguisher

MITM Distinguisher

$$
\delta(A) \text {-set: }\left\{P^{0}, P^{1}, \ldots, P^{N-1}\right\}
$$

MITM Distinguisher

$$
\delta(A) \text {-set: }\left\{P^{0}, P^{1}, \ldots, P^{N-1}\right\}
$$

$$
\left\{C^{0}, C^{1}, \ldots, C^{N-1}\right\}
$$

MITM Distinguisher

$$
\delta(A) \text {-set: }\left\{P^{0}, P^{1}, \ldots, P^{N-1}\right\}
$$

$$
\left\{C^{0}, C^{1}, \ldots, C^{N-1}\right\}
$$

$\Delta_{\mathrm{E}}(A, B):\left\{C^{0}[B] \oplus C^{1}[B], C^{0}[B] \oplus C^{2}[B], \ldots, C^{0}[B] \oplus C^{N-1}[B]\right\}$

- Random Cipher: \mathcal{N}_{R}

- Random Cipher: \mathcal{N}_{R}
- Block Cipher : \mathcal{N}_{E} (save into a hash table)

- Random Cipher: \mathcal{N}_{R}
- Block Cipher : \mathcal{N}_{E} (save into a hash table)

Condition $\mathcal{N}_{E}<\mathcal{N}_{R}$

- Random Cipher: \mathcal{N}_{R}
- Block Cipher : \mathcal{N}_{E} (save into a hash table)

Condition $\mathcal{N}_{E}<\mathcal{N}_{R}$

Distinguisher: $\left(A, B, \mathcal{N}_{E}\right)$

Structure of the attack

- a cipher is divided in three keyed permutations: E_{0}, E_{1}, E_{2}
- Construct distinguisher $\left(A, B, \mathcal{N}_{E}\right)$ at E_{1}

Outline

(1) Introduction
(2) Modelling the MITM attack

- Modelling the distinguisher
- Modelling the Key-Recovery Process

3) MITM and Impossible differential application in design
(4) Conclusion

Variables

- $\operatorname{Var}(\mathrm{X})$ describe the forward differential
- $\operatorname{Var}(\mathrm{Y})$ describe the backward determination
- $\operatorname{Var}(Z)$ models the relation between $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$

Forward differential

Variables Var (X)

$X_{r}[j]=0$ iff $P_{r}^{0}[j] \oplus P_{r}^{i}[j]=0, \forall i \in 1, \ldots, N-1$.

$$
\begin{aligned}
x_{2} & =x_{0} \\
2 x_{3} & \geq x_{0}+x_{1} \\
x_{3} & \leq x_{0}+x_{1}
\end{aligned}
$$

Forward differential

Variables Var (X)

$X_{r}[j]=0$ iff $P_{r}^{0}[j] \oplus P_{r}^{i}[j]=0, \forall i \in 1, \ldots, N-1$.

$$
\begin{aligned}
x_{2} & =x_{0} \\
2 x_{3} & \geq x_{0}+x_{1} \\
x_{3} & \leq x_{0}+x_{1}
\end{aligned}
$$

Forward differential

Variables Var(X)

$X_{r}[j]=0$ iff $P_{r}^{0}[j] \oplus P_{r}^{i}[j]=0, \forall i \in 1, \ldots, N-1$.

$$
\begin{aligned}
x_{2} & =x_{0} \\
2 x_{3} & \geq x_{0}+x_{1} \\
x_{3} & \leq x_{0}+x_{1}
\end{aligned}
$$

Forward differential

Variables Var(X)

$X_{r}[j]=0$ iff $P_{r}^{0}[j] \oplus P_{r}^{i}[j]=0, \forall i \in 1, \ldots, N-1$.

$$
x_{2}=x_{0}
$$

$2 x_{3} \geq x_{0}+x_{1}$
$x_{3} \leq x_{0}+x_{1}$

Backward determination

Variables Var (Y)

$$
\begin{aligned}
y_{2}+y_{3} & \leq 2 y_{0} \\
y_{2}+y_{3} & \geq y_{0} \\
y_{1} & =y_{3}
\end{aligned}
$$

Backward determination

Variables Var(Y)

$$
\begin{aligned}
y_{2}+y_{3} & \leq 2 y_{0} \\
y_{2}+y_{3} & \geq y_{0} \\
y_{1} & =y_{3}
\end{aligned}
$$

Backward determination

Variables Var (Y)

$$
\begin{aligned}
y_{2}+y_{3} & \leq 2 y_{0} \\
y_{2}+y_{3} & \geq y_{0} \\
y_{1} & =y_{3}
\end{aligned}
$$

Backward determination

Variables Var (Y)

$$
\begin{aligned}
y_{2}+y_{3} & \leq 2 y_{0} \\
y_{2}+y_{3} & \geq y_{0} \\
y_{1} & =y_{3}
\end{aligned}
$$

Constraints for Var (Z)

Variables $\operatorname{Var}(\mathrm{Z})$ describe the relation between $\operatorname{Var}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{Y})$:

$$
Z_{r}[j]=1 \text { iff } X_{r}[j]=Y_{r}[j]=1
$$

objective function: Minimize $\sum_{r=r_{0}+1}^{r_{0}+r_{1}-1} Z_{2 r}$

Constraints for Var (Z)

Variables $\operatorname{Var}(\mathrm{Z})$ describe the relation between $\operatorname{Var}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{Y})$:

$$
Z_{r}[j]=1 \text { iff } X_{r}[j]=Y_{r}[j]=1
$$

objective function: Minimize $\sum_{r=r_{0}+1}^{r_{0}+r_{1}-1} Z_{2 r}$

Round 1
Round 2

$$
M C=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Round 1
Round 2

$$
M C=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Round 1
Round 2

$$
M C=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Round 1
Round 2

$$
M C=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Round $1 \quad$ Round 2

Table 2: An enumeration of all $\mathcal{D S}$-MITM distinguishers for 10.5 -round SKINNY-
128-384 with $40 \leq \operatorname{Deg}(\mathcal{A}, \mathcal{B}) \leq 48$.

No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$	No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$	No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$
1	$[15][4]$	40	21	$[13][6,4]$	45	41	$[13]$	$[5]$	46		
2	$[12][5]$	40	22	$[14]$	$[7,5]$	45	42	$[12]$	$[4]$	46	
3	$[13][6]$	40	23	$[13]$	$[6,4]$	45	43	$[14]$	$[6]$	46	
4	$[14][7]$	40	24	$[15][4,6]$	45	44	$[15]$	$[7]$	46		
5	$[15][5]$	42	25	$[13]$	$[5]$	45	51	$[13]$	$[4,6]$	47	
6	$[12][6]$	42	26	$[15]$	$[6]$	45	52	$[12]$	$[7,5]$	47	
7	$[13][7]$	42	27	$[14]$	$[4]$	45	53	$[14]$	$[5,7]$	47	
8	$[14][4]$	42	28	$[13]$	$[4]$	45	54	$[15]$	$[6,4]$	47	
9	$[13][5]$	43	29	$[14]$	$[5]$	45	49	$[13]$	$[6]$	47	
10	$[14][6]$	43	30	$[14]$	$[6]$	45	50	$[13]$	$[6]$	47	
11	$[12][4]$	43	31	$[12]$	$[4]$	45	51	$[14]$	$[7]$	47	
12	$[15][7]$	43	32	$[15]$	$[5]$	45	52	$[12]$	$[5]$	47	
13	$[12][7]$	44	33	$[13]$	$[7]$	45	53	$[12]$	$[5]$	47	
14	$[13][4]$	44	34	$[12]$	$[6]$	45	54	$[14]$	$[7]$	47	
15	$[12][7]$	44	35	$[15]$	$[7]$	45	55	$[15]$	$[4]$	47	
16	$[13][4]$	44	36	$[12]$	$[7]$	45	56	$[15]$	$[4]$	47	
17	$[13][4]$	44	37	$[14]$	$[4,6]$	46	57	$[15]$	$[7,5]$	48	
18	$[14][5]$	44	38	$[13][7,5]$	46	58	$[14]$	$[6,4]$	48		
19	$[14][5]$	44	39	$[15][5,7]$	46	59	$[12]$	$[4,6]$	48		
20	$[13][4]$	44	40	$[12]$	$[6,4]$	46	60	$[13]][5,7]$	48		

Table 2: An enumeration of all $\mathcal{D S}$-MITM distinguishers for 10.5-round SKINNY-128-384 with $40 \leq \operatorname{Deg}(\mathcal{A}, \mathcal{B}) \leq 48$.

No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$	No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$	No.	\mathcal{A}	\mathcal{B}	$\operatorname{Deg}(\mathcal{A}, \mathcal{B})$
1	[15]	[4]	40	21	[13]	[6, 4]	45	41	[13]	[5]	46
2	[12]	[5]	40	22	[14]	$[7,5]$	45	42	[12]	[4]	46
3	[13]	[6]	40	23	[13]	[6, 4]	45	43	[14]	[6]	46
4	[14]	[7]	40	24	[15]	$[4,6]$	45	44	[15]	[7]	46
5	[15]	[5]	42	25	[13]	[5]	45	51	[13]	[4, 6]	47
6	[12]	[6]	42	26	[15]	[6]	45	52	[12]	[7, 5]	47
7	[13]	[7]	42	27	[14]	[4]	45	53	[14]	$[5,7]$	47
8	[14]	[4]	42	28	[13]	[4]	45	54	[15]	[6, 4]	47
9	[13]	5]	43	29	[14]	[5]	45	49	[13]	[6]	47
10	[14]	[6]	43	30	[14]	[6]	45	50	[13]	[6]	47
11	[12]	[4]	43	31	[12]	[4]	45	51	[14]	[7]	47
12	[15]	[7]	43	32	[15]	[5]	45	52	[12]	[5]	47
13	[12]	[7]	44	33	[13]	[7]	45	53	[12]	[5]	47
14	[13]	[4]	44	34	[12]	[6]	45	54	[14]	[7]	47
15	[12]	(7)	44	35	[15]	[7]	45	55	[15]	[4]	47
16	[13]	[4]	44	36	[12]	[7]	45	56	[15]	[4]	47
17	[13]	[4]	44	37	[14]	$[4,6]$	46	57	[15]	[7, 5]	48
18	[14]	[5]	44	38	[13]	[7, 5]	46	58	[14]	[6, 4]	48
19	[14]	[5]	44	39	[15]	$[5,7]$	46	59	[12]	[4, 6]	48
20	[13]	4]	44	40	[12]	[6, 4]	46	60	[13]	[5, 7]	48

New 0-1 variables Var(M) and Var(W)

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

Var(M): Backward differential

Round 2		SB,AC				Round3			
						MC			
		AK, SR							

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(W)$

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

New 0-1 variables Var(M) and Var(W)

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

Var(M): Backward differential

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(\mathrm{W})$

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(W)$

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(W)$

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(W)$

Round 0

New 0-1 variables $\operatorname{Var}(\mathrm{M})$ and $\operatorname{Var}(\mathrm{W})$

Round 0

$M C^{-1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
$\operatorname{Var}(W)$: Forward determination

Distinguisher

11-round Distinguisher

1-round Distinguisher

Key bridging technique

Key bridging technique

${ }^{0}{ }^{1}{ }^{2}{ }^{2}{ }^{3}{ }^{4} \frac{5}{5}$

Round 3

 Shift to the left by 29-bit

Round

the left by 29-bit
Round
 |1| |

Outline

(1) Introduction
(2) Modelling the MITM attack
(3) MITM and Impossible differential application in design

- Results of Lblock
- Results of TWINE
(4) Conclusion

LBlock

- LBlock

- $8!=40320$ variants ciphers against MITM and ID

LBlock

- LBlock

- $8!=40320$ variants ciphers against MITM and ID

Results of LBlock

All exist 14-round ID distinguisher
32 permutations are good:

- no 15 -round ID distinguisher
- strong against the MITM Distinguisher

TWINE

TWINE Cipher:

Enumeration: $22 \cdot 8$!

TWINE

TWINE Cipher:

Enumeration: $22 \cdot 8$!

Results of TWINE

- 144 permutations: no 15-round ID Distinguisher.
- 84 permutations are good in the view of MITM.
- 12 permutations are best: no 11-round MITM distinguisher

Outline

(2) Modelling the MITM attack

3) MITM and Impossible differential application in design
4. Conclusion

Conclusion

Conclusion

- modelling the MITM attack
- ID and MITM for variants cipher of LBlock and TWINE

Future Work - Differential enumaraion

- Key Bridging

Thanks for your attention.

